
1

Adaptive Impact-Driven Detection of Silent Data
Corruption for HPC Applications

Sheng Di, Member, IEEE , Franck Cappello, Member, IEEE

Abstract—For exascale HPC applications, silent data corruption (SDC) is one of the most dangerous problems because there is no

indication that there are errors during the execution. We propose an adaptive impact-driven method that can detect SDCs dynamically.

The key contributions are threefold. (1) We carefully characterize 18 real-world HPC applications and discuss the runtime data

features, as well as the impact of the SDCs on their execution results. (2) We propose an impact-driven detection model that does not

blindly improve the prediction accuracy, but instead detects only influential SDCs to guarantee user-acceptable execution results. (3)

Our solution can adapt to dynamic prediction errors based on local runtime data and can automatically tune detection ranges for

guaranteeing low false alarms. Experiments show that our detector can detect 80-99.99% of SDCs with a false alarm rate less that 1%

of iterations for most cases. The memory cost and detection overhead are reduced to 15% and 6.3%, respectively, for a large majority

of applications.

Index Terms—Fault Tolerance, Silent Data Corruption, Exascale HPC

✦

1 INTRODUCTION

Researchers are increasingly relying on massively parallel
supercomputing to resolve complex problems.

In exascale HPC executions, unintended errors are in-
evitable because of the huge size of the resources (such
as CPU cores and memory). Compared with the fail-stop
errors (like hardware crashes), silent data corruption (SDC)
is hazardous as there is no indication that the data are
incorrect during the execution. A typical example is bit-
flip errors striking the memory because of unexpected or
uncontrolled factors such as alpha particles from package
decay or cosmic rays. Other errors (such as in floating point
operators [1]) may not be detected by hardware because of
the cost of protective techniques, leading to incorrect com-
pute results at the end of the execution. Accordingly, timely
effective detection of the SDC is crucial for guaranteeing the
correctness of execution results and high performance.

In our previous work [2], [3], [4], we proposed an SDC
detector that predicts the next-step value for each data
point and compares the corresponding observed value with
a normal value range (a.k.a., detection range) based on the
predicted value, for detecting possible data anomalies. Like
most of the existing research [5], [6], [7], we endeavored to
optimize both the detection precision (the fraction of true
SDCs detected over all detected ones) and sensitivity (the
fraction of true SDCs detected over all SDCs experienced).
The sensitivity is also known as recall, and we will inter-
changeably use them in the following text. We compared
different linear-prediction methods with regard to HPC run-
time data in [3], and we further proposed an error-feedback
control model to improve the detection ability in [8].

In this work, we revisit the SDC detection issue and
propose an impact-driven model based on our careful char-

• Sheng Di and Franck Cappello are with the Mathematics and Computer
Science (MCS) division at Argonne National Laboratory, USA.

acterization of 18 real-world HPC applications. We argue
that one should not blindly enhance the detection ability
with regard to the SDC. Instead, our research objective is to
keep fairly low false alarms (false positives) with acceptable
compute results. That is, some SDCs are acceptable, as long
as their impact is low enough from the perspective of users.
On the one hand, there is a tradeoff between the detection
sensitivity and detection precision, since one cannot avoid
the data prediction errors. On the other hand, pursuing
high detection sensitivity inevitably induces huge detection
overhead, as discussed in [3], [8].

At least two challenges arise in this research.

• Irregularity of SDCs: Predicting SDCs in practice is
difficult because of the random occurrence of SDCs.
Thus, it is non-trivial to quantify the impact of the
SDCs on the final execution results. Without an in-
depth analysis of the impact of SDCs, it is hard to
determine an appropriate detection range for detecting
the SDCs. The existing research, such as [3], optimizes
the detection range based on the desired final compute
accuracy. Such a method has a fairly high detection
sensitivity, however, it may suffer high false alarms
(i.e., low precisions) because the required accuracy may
change with iterations or input parameters.

• Diverse data features of HPC applications: Since HPC
applications are of many different types from differ-
ent communities (such as physics, chemistry, biology,
and mathematics), the iterative runtime data generated
during the execution is extremely hard to uniformly
model or regularize. Consequently, the features of HPC
data would be fairly diverse with applications. For
instance, the values of data points may change sharply
in some iterations. The overall data value range may
also change over time steps. Hence, the data predic-
tion methods may have largely different prediction
accuracies with various applications. Clearly needed

2

TABLE 1: Applications Used in the Characterization

Domain Name Code Description
Blast2 [18] Flash Strong shocks and narrow features
SodShock [19] Flash Sodshock tube for testing compressible code’s ability with shocks & contact discontinuities
Sedov [20] Flash Hydrodynamical test code involving strong shocks and non-planar symmetry

HD DMReflection [18] Flash Double Mach reflection: an evolution of an unsteady planar shock on an oblique surface
IsentropicVortex [21] Flash 2D isentropic vortex problem: a benchmark of comparing numerical methods for fluid dynamics
RHD Sod [22] Flash Relativistic Sod Shock-tube: involving the decay of 2-fluids into 3-elementary wave structures
RHD Riemann2D [23] Flash Relativistic 2D Riemann: exploring interactions of four basic waves consisting of shocks, etc.
Eddy [24] Nek5k 2D solution to Navier-Stokes equations with an additional translational velocity
Vortex [25] Nek5k Inviscid Vortex Propagation: tests the problem in earlier studies of finite volume methods [26]
BrioWu [27] Flash Coplanar magneto-hydrodynamic counterpart of hydrodynamic Sod problem

MHD OrszagTang [28] Flash Simple 2D problem that has become a classic test for MHD codes
BlastBS [29] Flash 3D version of the MHD spherical blast wave problem
GALLEX [30] Nek5k Simulation of gallium experiment (a radiochemical neutrino detection experiment)

BURN Cellular [31] Flash Burn simulation: cellular nuclear burning problem
GRAV DustCollapse [32] Flash Selfgravitating problems in which the flow geometry is spherical without gas pressure

MacLaurin [16] Flash MacLaurin spheroid (gravitational potential at the surface/inside a spheroid)
DIFF ConductionDelta [16] Flash Delta-function heat conduction problem: examining the effects of Viscosity

HeatDistribution [33] customized Steady-state heat distribution with Laplace’s equation by Jacobi iterative method

is an adaptive solution that is suitable for different
applications. Moreover, the application codes are made
by different programming languages based on various
data formats, which also increases the difficulty of our
data analysis.

In this paper, we propose a novel SDC detection solution
based on the comprehensive characterization of 18 real-
world HPC applications on a real cluster - namely FUSION
[36]. The key contributions are summarized as follows:

• We carefully study the key HPC data features of real-
world applications, and we characterize the impact of
SDC on HPC execution results based on dynamic value
ranges and data fluctuation over time.

• We propose a generic impact-driven detection model
to detect influential SDCs, which can reduce false
positives significantly. The detection sensitivity is also
tunable for different environments with various SDC
rates.

• We devise an adaptive SDC detection approach, under
which each process can adaptively select the best-fit
prediction method based on its local runtime data. Such
a solution creates an avenue to adapt to the data dy-
namics, optimizing the tradeoff between the detection
overhead and false alarms.

• We carefully implement the adaptive impact-driven
SDC detection library, supporting a broad range of HPC
applications coded in either C or Fortran. The library is
available to download from [40] under the BSD license.
Our detector can detect any SDCs, including not only
bitflip errors, but bugs and attacks.

• We evaluate the detector by running real-world HPC
applications on up to 1,024 cores. Experiments show
that for a large majority of applications, our detection
method can keep the rate of false alarms less than 1%
of iterations and the detection sensitivity within 80-
99.99%, with the memory cost and detection overhead
reduced to 15% and 6.3%, respectively.

The rest of the paper is organized as follows. We present
the design overview in Section 2. In Section 3, we present
our characterization results based on 18 HPC applications
across from different codes, and we analyze the key features,
such as the smoothness of the time series data and the
impact of SDC on HPC execution results. In Section 4, we
propose an adaptive solution that can effectively control the
SDC detection overhead and false alarms, while guarantee-

ing the correctness of the compute results. We present the
evaluation results in Section 5. We discuss related work in
Section 6 and we present in Section 7 concluding remarks
and ideas for future work.

2 SYSTEM OVERVIEW

We illustrate the system architecture in Fig. 1. The key mod-
ule, fault tolerance toolkit, contains two significant parts,
SDC detector and failure/error corrector. In this paper, we
only focus on the SDC detection, because the correction
issue becomes a real problem only if the detection is already
solved well. As for the correction of SDC errors, many
existing techniques such as checkpoint/restart [11], [12],
[13] have been extensively studied for years. As shown
in Fig. 1, our detector will mainly communicate with the
HPC application data generated iteratively, in contrast with
the algorithm based fault tolerance (ABFT) [14], [15] that is
implemented in application library.

Parallel Programming Library (e.g., MPICH [10])

Physical Infrastructure (e.g., Mira, Blue/G)

Fault Tolerance Toolkit (e.g., FTI [9])

SDC Detector Failure/Error Corrector

HPC Application

Application Data Application Library

Fig. 1: System Architecture

For the fault model, we focus on the unexpected data
changes caused by SDCs such as bit-flips of the data. Our
detector performs the one-step ahead prediction only for
the state variables (a.k.a., state data points), because the state
variables represent the execution results concerned by users.
The users do not care about the SDCs occurring outside the
state-variable memory (such as in intermediary variables
and buffers), unless they would affect the state values.

Our research objective is to develop a generic SDC
detector suitable for a large set of mainstream HPC appli-
cations, which perform dynamic simulations over multiple
iterations. The basic model used in our detection is one-step
ahead prediction [2], [4], [8], which dynamically predicts the
value for each data point at each time step and compares the
observed value with a normal value range. Unlike previous
SDC detectors, our detector aims to detect only influential

3

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(a) Blast2

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(b) SodShock

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(c) Sedov

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(d) DMReflection

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(e) IsentropicVortex

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(f) RHD Sod

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(g) RHD Riemann2D

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(h) Eddy

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(i) Vortex

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(j) BrioWu

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(k) OrszagTang

 0

 2

 4

 6

 8

 10

 12

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(l) BlastBS

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(m) GALLEX

 1.38

 1.4

 1.42

 1.44

 1.46

 1.48

 1.5

 1.52

 1.54

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(n) Cellular

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

 1.4e+10

 1.6e+10

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(o) DustCollapse

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 200 400 600 800 1000
D

a
ta

 V
a

lu
e

Time Steps

(p) MacLaurin

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(q) ConductionDelta

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 200 400 600 800 1000

D
a

ta
 V

a
lu

e

Time Steps

(r) HeatDistribution

Fig. 2: Sampled Time Series Data of The 18 HPC Applications

SDCs in terms of dynamic HPC data features. Each pro-
cess is able to adaptively determine the best-fit prediction
method based on local runtime data, which can effectively
improve the detection sensitivity and reduce overhead.

3 EXPLORATION OF KEY FEATURES FOR HPC

APPLICATION DATA

In this section, we characterize the key features of the
HPC data regarding SDCs, by running 18 real-world HPC
applications on a real cluster environment. In particular, we
explore the dynamic HPC data fluctuation and analyze the
impact of the SDCs on the execution results respectively,
which is the fundamental basis of our adaptive impact-
driven detection method.

The 18 real-world HPC applications are from well-
known simulation code packages, such as FLASH [34] and

Nek5000 (or Nek5k) [35] (except for HeatDistribution that
is customized with finite difference methods [33]). All the
applications presented in Table 1 involve different research
fields, such as hydrodynamics (HD), magneto hydrodynam-
ics (MHD), burning (BURN), gravity (GRAV), and diffu-
sion (DIFF). They are designed using hybrid/semi-implicit
methods (except for HeatDistribution that adopts explicit
methods) and are coded in either Fortran or C. According
to the developers, most of the applications are used to solve
real research problems. In this characterization, all of them
were run on 128 cores from Argonne FUSION cluster [36].
The number of iterations is set to 1,000, which is large
enough to observe the data evolution based on our analysis
of execution results.

4

3.1 Diverse HPC Data Fluctuation

In Fig. 2, we present the time series data fluctuation for
each of the 18 HPC applications. Most of the data used in
this characterization involve the density variable, unless it is
unavailable. For instance, neither Eddy nor Vortex has a den-
sity variable, so we adopt the pressure variable instead. The
time series data regarding other variables are not presented
because of the similar data fluctuation we observed. In the
characterization, we select 100 sample points evenly in the
data space for each application, and we plot the time series
curves for each point by different colors.

Based on Fig. 2, we have four important findings, which
indicate high diversity of HPC data with applications.

1) HPC data exhibit different degrees of smoothness. Some
applications exhibit sharp data changes in short pe-
riods. In this situation, the data prediction used to
detect anomalies will definitely suffer from large errors.
By comparison, the data outputted by Vortex are very
smooth in the whole period. In this situation, the pre-
diction method will work well, as confirmed by our
previous work [8].

2) HPC data have largely different value ranges with applica-
tions. The value range can be split into four categories:
tiny range (e.g., [-0.01,0.05] for Vortex), small range
(e.g., [0.1,1] for BrioWu), medium range (e.g., [0,20] for
majority applications like Blast2, SodShock, and Sedov),
and big range (e.g., [0,1.6×1010] for DustCollapse). Var-
ious global value ranges indicate different impacts on
the compute results with the same SDC data changes.

3) HPC data usually keep comparative value range in short pe-
riods. For most of the applications (such as Blast2, DM-
Reflection, IsentropicVortex, Eddy and OrszagTang),
the value range changes slightly, especially in short
periods. By contrast, the data value ranges of only a few
applications change largely over time, such as Sedov.

4) HPC data exhibit largely different patterns with applications.
Some time series data behave very irregularly, while
other application data exhibit a clear periodicity. A typ-
ical example with seasonal time series data is Isentrop-
icVortex, as it simulates a periodic phenomenon. Other
applications exhibit non-periodic time series data (e.g.,
ConductionDelta, HeatDistribution, and DustCollapse).

For the detection based on linear prediction methods,
the smoothness of the time series data generated by HPC
applications (i.e., the first finding in the above list) is the
most significant, because it is closely related to the pre-
diction accuracy. Hence, we study the smoothness of the
time series data based on various HPC applications in the
following text. We perform the evaluation by both the lag-1
auto-correlation coefficient of the time series (denoted by α)
and the lag-1 auto-correlation coefficient of the data changes
(denoted by β), since neither can individually represent the
smoothness of HPC data, as shown later. We call the two
coefficients level-1 smoothness coefficient and level-2 smoothness
coefficient respectively.

The auto-correlation coefficient (ACC) [37] is a well-
known indicator to evaluate the auto-correlation of time
series data. Its definition is shown in Equation (1), where
V (t) refers to the data value at time step t, E[·] and µ refer
to the mathematical expectations that can be estimated by

mean values, and σ refers to the standard deviation. The
value range of the auto-correlation coefficient is [−1, 1], with
1 indicating perfect correlation, 0 indicating noncorrelation,
and −1 indicating perfect anticorrelation.

α =
E[(V (t)− µ(V))(V (t+ 1)− µ(V))]

σ2(V)
(1)

In addition to the ACC of time series data, we also evalu-
ate the smoothness by the ACC of data changes (i.e., level-2
smoothness), which is defined in Equation (2), where ∆(t) =
V (t)−V (t−1), and µ(∆) and σ(∆) refer to the expected data
change and the deviation of data change, respectively.

β =
E[(∆(t)− µ(∆))(∆(t+ 1)− µ(∆))]

σ2(∆)
(2)

In Fig. 3, we give an example to further illustrate the
level-2 smoothness coefficient. It is easy to see that ∆(i)
and ∆(i + 1) are equal to the left derivative and right
derivative of the data point value at the time step i. The
curve is considered smooth at the time point i when its left
derivative and right derivative at this point are close to each
other. In particular, if the two derivatives are always the
same for each time point, the curve is a straight line.

ii-1 i+1 i+2i-2 …… Time steps

T
im

e
 s

e
ri
e
s
 d

a
ta

∆(i)

∆(i+1)
left derivative = ∆(i)

right derivative = ∆(i+1)

0

Fig. 3: Smoothness Evaluation by Lag-1 ACC of Data Changes (Level-2
Smoothness Coefficient)

By combining the two levels of smoothness coefficient,
we can study the smoothness feature for the HPC time series
data comprehensively. The level-1 coefficient α represents
the overall smoothness of the time series, while the level-
2 coefficient β indicates the existence of the sharp changes
in the time series. Specifically, if the time series data ex-
hibit perfectly smooth changes (such as a straight line or a
quadratic curve), both coefficients are supposed to be very
high (close to 1). If α is close to 1 while β is close to 0, the
time series will look smooth overall, with only a few sharp
changes at particular time steps.

In Fig. 4, we present the cumulative distribution function
(CDF) of the two coefficients for 8 typical applications. For
the other 10 HPC applications listed in Table 1, both of the
two smoothness coefficients are always greater than 0.95,
which means their time series data are always very smooth.

 0

 0.2

 0.4

 0.6

 0.8

 1

-0.4 -0.2 0 0.2 0.4 0.6 0.8 1

C
D

F

Level-1 Smoothness Coefficient (α)

Blast2
Eddy

Vortex
OrszagTang

BlastBS
DMReflection

MacLaurin
HeatDistribution

(a) α (level 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

-1 -0.5 0 0.5 1

C
D

F

Level-2 Smoothness Coefficient (β)

(b) β (level 2)

Fig. 4: Distribution of Smoothness Coefficient

5

In Fig. 4, we can observe that all of the time series data
(except Eddy) exhibit smooth changes overall in the whole
period. Compared with the level-1 smoothness coefficient,
we find that the level-2 smoothness coefficients do not
always show very high values for many applications. This
means that in the HPC time series data of such applications,
sharp changes exist at some time steps, although the data
are smooth overall in the whole period. We note that some
application data such as IsentropicVortex look not smooth in
the whole period in Fig. 2, yet they are not presented in Fig.
4. The reason is that their two coefficient values are always
close to 1, indicating that their data actually are very smooth
in short periods.

In summary, the HPC time series data of the analyzed
applications are smooth overall but may have sharp changes
at a few time steps. This finding indicates that the predic-
tion method should work effectively for detecting SDCs at
runtime. However, because of the data dynamics as shown
above, it is necessary to devise an adaptive method which
can suit different fluctuation features of the HPC data.

3.2 Impact of the SDCs on Execution Results

In this subsection, we first analyze the factors of the impact
of SDC on HPC executions, based on which we formulate
the impact of SDC in Section 3.2.3. We then characterize
SDC’s impact based on real-world applications, which is the
basis of our impact-driven detection method.

3.2.1 Factors Affecting SDC Impact

Basically, three factors directly determine the impact of the
SDC on HPC execution. We will use them to formulate the
impact of SDC later.

1) Bit position of the data value flipped. A single-
precision floating-point number is represented by 32
bits in binary and a double-precision number by 64 bits
in binary. Different bit positions flipped by the SDC
will affect the data differently. Taking the number 1.0
as an example, upon the bit-flip error with the bits 10,
20, 30, 40, and 50, the new values are 1+2.274×10−13,
1+2.328306×10−10, 1.00000023841858, 1.000244140625,
and 1.25, respectively.

2) Value range of the state variable. For the same data
change induced by SDC, various compute data value
ranges also affect the impact of the SDC differently
on the execution results. For example, suppose the
data change is 0.5 due to a bit-flip error. Its impact
would be easily observed if all data values appear in
a small range such as [0,1], whereas it would be hardly
perceived in a fairly large value range such as [0,10000].

3) Occurrence moment of the SDC during the execution.
The impact of SDC on the final execution result will be
different when the SDC occurs at different moments
(such as at the beginning versus at the end of the
running period). The reason is that the SDC would lead
to different impacts on the runtime outputs at different
following time steps after the corruption, as shown later
on (in Section 3.2.4).

3.2.2 Preliminary Observation of SDC Impact

Fig. 5 illustrates SDC impact on runtime outputs by running
DMReflection with injected bit-flip errors. As shown, each

snapshot is split into 8×16=128 tiles, which were computed
on 128 cores. One error was injected at step 20 to the
bottom middle point (2,0.0) with bit 56 flipped, such that the
value was changed from 1.7856 to 2.7428×10−5. Through
the figure, we observe the impact of the SDC on the exe-
cution result would be submerged with time going, i.e., the
maximum difference between the fault-free execution and
SDC-based execution decreases over time. This is because
of the mutual influence of the bit-flipped data point and
its surrounding data points, such that the impact of the
bitflip error on the execution result would be mitigated in
the following computation over time. Such an observation
confirms that the occurrence moment of SDC during the
execution is one key factor affecting the impact of SDC.

(a) Step 100 (b) Step 800

-0.3 -0.2 -0.1 0.0 0.1 0.2

1.0
0.8
0.6
0.4
0.2
0.0

0 1 2 3 4

1.0
0.8
0.6
0.4
0.2
0.0

0 1 2 3 4

-0.002 -0.001-0.0015 -0.0005 0.000 0.0005
the deviation between two outputs the deviation between two outputs

density (g/cm) density (g/cm)3 3

Fig. 5: Impact of SDC on DMReflection

(a) step 100 (b) step 200

(c) step 400 (d) step 800

0.0

0.2

0.4

0.6

0.8

-0.2

-0.4

-0.6

1.0

0.8

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.0

0.2

0.4

0.6

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.0

-0.002

-0.004

 0.002

-0.02

-0.04

-0.06

 0.00

0.5

-0.5

-1.0

0.9

d
e

v
ia

ti
o

n
 b

e
tw

e
e

n
 t

w
o

 o
u

tp
u

ts
d

e
v
ia

ti
o

n
 b

e
tw

e
e

n
 t

w
o

 o
u

tp
u

ts

d
e

v
ia

ti
o

n
 b

e
tw

e
e

n
 t

w
o

 o
u

tp
u

ts
d

e
v
ia

ti
o

n
 b

e
tw

e
e

n
 t

w
o

 o
u

tp
u

ts

0.9

-1.25

-0.005-0.07

Fig. 6: Impact of SDC on Sedov (a bottom point of value 2.5×10
−5 has

an error on bit 56 at step 20)

In fact, the deviation of the runtime outputs compared
to the fault-free outputs may not always decrease after the
corruption. Fig. 6, for example, presents the impact of a bit-
flip error on Sedov’s execution. The bit-flip error was also
injected at time step 20, and it flipped the bit position 56
of the bottom middle data point, such that its value was
changed from 2.5×10−5 to 1.6384 silently. We can observe
that the value range of the deviation between the original
fault-free output and the bit-flip induced output is about [-
1.25,0.9] at step 200, in the comparison of the range [-0.6,0.9]
at step 100. More discussion of corruption propagation can
be found in our previous work [3].

3.2.3 Formulation of SDC Impact

Based on the three key factors summarized previously, we
formulate the impact of SDC on execution results (denoted
by I) as the maximum ratio of the absolute data change
value to the overall value range during a period after the
corruption. Suppose the SDC occurs at time step t1. The
impact of the SDC during the period t1 through t2 is defined
in Equation (3), where δt refers to the absolute deviation

6

between the SDC-free output and SDC-induced output at
time step t, and rt refers to the value range size at time step
t (i.e., rt=max(Vt)−min(Vt)).

I(t1, t2) = max
t∈[t1,t2]

{
δt

rt
} (3)

3.2.4 Characterization of SDC Impact

We characterize the impact of SDCs on the 18 HPC appli-
cations listed in Table 1, based on the above definition of
SDC impact. Each application was run by 128 cores for 1,000
iterations (i.e., time steps), and one bitflip error was injected
at time step 50 onto different data points with different
fluctuation degrees. We traverse 8 testcases with different
data changes caused by the SDC for each application. The
SDC-induced data change is evaluated by the relative data
change ratio (denoted by ϑsdc) , which is defined as the
ratio of the absolute data change induced by SDC (denoted
by ∆sdc) to the global data value range (denoted rsdc) at
the injection moment. The value of ϑsdc decreases expo-
nentially (=0.1×2−m, where m=0,1,2,· · ·) for observing the
impacts of SDCs with exponential data changes. Specifically,
ϑsdc(=∆sdc

rsdc
) is set to 0.1, 0.05, 0.025, 0.0125, 0.00625, 0.003125,

0.0015625 and 0.00078125 in the 8 testcases, respectively. We
run each case 10 times with various data points changed, so
each application has a total of 80 runs.

In Fig. 7, we present the impact traces. Two types of
impact traces exist. (1) The impacts of the SDCs on majority
(15 out of 18) of applications are basically proportional
to ϑsdc. (2) Only three applications (Eddy, BlastBS, and
DustCollapse) are fairly sensitive to tiny SDC-induced data
change, which is due to the fairly close mutual relations
among neighboring data points in both space and time.

3.2.5 Controlling the Impact of SDCs

To control the impact of the SDCs on demand, we intro-
duce an impact error bound ratio θ, which is defined as the
bound of the relative data change ratio that makes sure
the impact of SDCs can be limited to a low level in the
whole execution period. The impact error bound ratio is
formally defined in Equation (4), where [tsdc,tend] refers
to the whole execution period after the corruption and ϕ
indicates the acceptable maximum impact of the SDC in
the whole execution period. For instance, based on Fig. 7
(b), (c), and (d), if the relative data change ratio induced
by SDC is always below 0.00078125 for SodShock, Sedov
and DoubleMachReflection, respectively, the impact of the
SDC would be strictly limited within 2%, 0.09%, and 0.5%
respectively, in the whole execution period. That is, such
an impact error bound ratio can be leveraged to design an
impact-driven detector for detecting only influential SDCs
in the execution (discussed in details in Section 4).

θ = max
I(tsdc,tend)≤ϕ

{ϑsdc} = max
I(tsdc,tend)≤ϕ

{
∆sdc

rsdc
} (4)

Based on Fig. 7, we find that a large majority of appli-
cations (15 out of 18) are suitable to be protected based on
the impact error bound ratio. When the impact error bound
ratio θ is set to 0.00078125, the impact of SDC can be limited
below 2% of the data value range in the whole execution
period for most cases (an exception is Blast2, whose bound
ratio recommended is 0.0001). Thus, θ=0.00078125 or 0.0001
is a recommended bound ratio when the users have no
preliminary impact traces for their applications.

4 ADAPTIVE IMPACT-DRIVEN SDC DETECTOR

FOR HPC APPLICATIONS

The basic idea is to allow different running processes to
select the best-fit prediction methods for their own detec-
tions, in terms of their local runtime data. Fig. 8 presents
the compute result of the Sedov shockwave simulation at
time steps 100 and 200. As illustrated, the whole data set
is split into 16×8=128 tiles, which were processed by 128
processes in parallel. One can clearly see that the data
handled by different processes evolve differently at different
time steps. In particular, the data around the edge of the
shockwave change sharply, introducing greater difficulty for
data prediction than other data areas require. Therefore, the
processes are supposed to adopt different prediction meth-
ods with various accuracies and overheads. For instance, at
time step 100, rank 14, rank 25, and rank 36 adopt last state
fitting (LSF), linear curve fitting (LCF), and quadratic curve
fitting (QCF), respectively. At time step 200, the prediction
methods of rank 25 and rank 36 are changed because of
the changed data fluctuation around that moment. In our
design, the prediction methods are automatically changed
based on the recent prediction errors estimated dynamically,
to be discussed in details in Section 4.3.1.

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x (cm)

y
 (

c
m

)

0

1

2

3

4

Density (g/cm)3

(a) time step 100

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x (cm)

y
 (

c
m

)

0

1

2

3

4

Density (g/cm)3

(b) time step 200

Fig. 8: Illustration of Data Partitioning and Adaptive Prediction (Sedov)

4.1 Detection Model

The overall detection model is illustrated in Fig. 9. Our
detector checks each local data point at each time step.
For any specific data point, we first perform the one-step
ahead prediction based on the bestfit prediction method,
and construct a normal value range in terms of the impact
error bound explored based on the characterization of real-
world applications (see Fig. 7). The normal value range is
set to [X(t) − ρ , X(t) + ρ], where X(t) is the predicted
data point value for the time step t and ρ is called detection
radius. Then, we compare the observed data value V (t) (the
circle point in the figure) with the normal value range for
detecting the possible SDCs. Two types of predictions exist,
valid prediction (the prediction error is smaller than the
impact error bound) and invalid prediction (prediction error
is greater than the impact error bound), as shown in Fig. 9.
Our detector seeks to select the prediction method with high
prediction accuracy and low memory cost if valid prediction
methods exist, or otherwise it will be gracefully degraded to
choose the simplest prediction method with lowest memory
cost. The detection range can also be dynamically enlarged
upon the gracefully degraded situation with large predic-
tion errors. Such a design can effectively reduce the false
positives and control the memory overhead.

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

Im
p
a
c
t
o
f
S

D
C

:
I(

5
0
,1

0
0
0
)

Time Steps

The key/legend is the same with Fig (l)

(a) Blast2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(b) SodShock

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(c) Sedov

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(d) DMReflection

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(e) IsentropicVortex

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(f) RHD Sod

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(g) RHD Riemann2D

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 100 200 300 400 500 600 700 800 900 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(h) Eddy

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0 100 200 300 400 500 600 700 800 900 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(i) Vortex

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(j) BrioWu

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(k) OrszagTang

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078
θ=0.00039

θ=0.0002
θ=0.0001

(l) BlastBS

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700 800 900 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(m) GALLEX

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(n) Cellular

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(o) DustCollapse

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0 200 400 600 800 1000
Im

p
a

c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(p) MacLaurin

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(q) ConductionDelta

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 200 400 600 800 1000

Im
p

a
c
t

o
f

S
D

C
:

I(
5

0
,1

0
0

0
)

Time Steps

θ=0.1
θ=0.05

θ=0.025
θ=0.0125

θ=0.00625
θ=0.003125

θ=0.00156
θ=0.00078

(r) HeatDistribution

Fig. 7: Impact of the SDC on HPC Applications with Different Injected Bit-flip Errors

b

real data value

V(t)

Predicted

data

value X(t)

ε

Legend

Predicted data value

Real data value

ε Prediction error

b Impact error bound

Impact

error

bound

b

real data

value

V(t)

Predicted

data

value X(t)

ε

ρ detection radius

ρ

ρ

ε b ε≥b

b

Fig. 9: Detection with Valid/Invalid Prediction

4.2 Error Feedback Prediction

In our detector, we use curve fitting to perform one-step
ahead prediction in the detector. Since it is non-trivial to
derive high-order prediction formulas for curve fitting, we
explore a recursive error feedback model that can significantly
simplify the prediction. We also demonstrate the identity be-

tween the feedback prediction and curve fitting prediction,
in comparison to our previous work [8].

We denote X(t) the data value to be predicted at the
time step t, and the detector keeps N recent observed values
(denoted by Vt−1, Vt−2, · · · , Vt−N) for the data point. Then,
the error feedback prediction formula (with the feekback
order being equal to N) can be presented in recursive form,

as shown in Equation (5), where a
(N)
t−i denotes the coefficient

of the N th-order feedback prediction at time step t−i, and

e
(N−1)
t−1 is the prediction error at time step t−1. The initial

state, the 0th-order feedback prediction X(0)(t), is set to
V (t− 1) (i.e., last state fitting (LSF)).

X(N)(t)=
N
∑

i=1

(

a
(N)
t−iV (t−i)

)

=
N−1
∑

i=1

(

a
(N−1)
t−i V(t−i)

)

− e
(N−1)
t−1

=
N−1
∑

i=1

(

a
(N−1)
t−i V (t−i)

)

−

(

N−1
∑

i=1
a
(N−1)
t−1−iV (t−1−i)−V (t−1)

) (5)

8

Some examples of low-order feedback predictions are
listed below, based on the above Equation (5).
X(1)(t)=V (t−1)−[V (t−2)−V (t−1)]=2V (t− 1)−V (t− 2)
X(2)(t)=3V (t− 1)−3V (t− 2)+V (t− 3)
X(3)(t)=4V (t− 1)−6V (t− 2)+4V (t− 3)−V (t− 4)
X(4)(t)=5V (t−1)−10V (t−2)+10V (t−3)−5V (t−4)+V (t−5)

In the following proposition, we prove the identity be-
tween the feedback predictions and the curve fitting meth-
ods up to the third order, since higher orders do not help
reduce prediction errors as we observed in experiments.

Proposition 1. (1) First-order feedback prediction is identical
to linear curve fitting (LCF). (2) Second-order feedback
prediction is identical to quadratic curve fitting (QCF).
(3) Third-order feedback prediction is identical to cubic
curve fitting (CCF).

Proof: (1) The LCF plots a linear line (denoted by
f(x) = ax + b) based on the recent two observed values
for the target data point to make the prediction, as shown in
Fig. 10 (a). Because of the equal length of the time steps, the
coordinates of the two recent data values can be denoted as
(0, V (t−2)) and (1, V (t−1)), respectively. Then the predicted
value at t is equal to f(2)=2a + b, where a and b can be
computed by (0, V (t−1)) and (1, V (t−2)), respectively. One
can easily verify that f(2)=2V (t− 1)−V (t− 2)=X(1)(t).

Time Step

D
a

ta
 v

a
lu

e

(a) LCF method
Predicted values
Observed true data

Time Step

D
a

ta
 v

a
lu

e

t-1 t

(b) QCF method

t-2t-3t-2t-3 t-1 t

Quadratic CurveLinear Curve

Fig. 10: Illustration of LCF and QCF

(2) For QCF, a quadratic curve (denoted by f(x) = ax2+
bx+ c) will be determined based on the recent three values,
which can be denoted as (0, V (t− 3)), (1, V (t− 2)), and (2,
V (t−1)), respectively, as shown in Fig. 10 (b). Then, the pre-
dicted value at t can be computed by f(3)=9a+3b+c, where
a, b, and c are computed by the recent three values. One can
easily verify f(3)=3V (t−1)−3V (t−2)+V (t−3)=X(2)(t).

(3) We also validated the identity of CCF and the 3rd-
order feedback prediction. That is, the predicted value in
terms of the cubic curve plotted by the recent four values
is right equal to the 3rd-order feedback prediction value
X(3)(t) = 4V (t− 1)−6V (t− 2)+4V (t− 3)−V (t− 4).

Remark: (1) Based on Proposition 1, we can draw a rea-
sonable conjecture that the N th-order feedback prediction is
identical to the N th-order curve fitting. The strict proof will
be studied in our future work. (2) The feedback prediction
methods with various orders will lead to different predic-
tion accuracies/errors. In principle, higher-order predictions
may lead to higher prediction accuracy, yet this may not be
true for some applications based on our characterization.
As shown in Table 2, 13 applications (highlighted in bold)
out of the 18 applications have higher prediction accuracy
when using the 2nd order feedback prediction (i.e., QCF)
than using the 1st order feedback prediction (i.e., LCF)
or 0th order feedback prediction. However, the prediction
error may not always decrease with the prediction orders
for some applications, such as HeatDistribution. Thus, we

have to design an adaptive solution based on the runtime
prediction errors, as detailed later.

4.3 Adaptive Impact-Driven Detector (AID)

4.3.1 Adaptive Selection of Best-fit Prediction Method

Initially, we wanted to leverage the data changes to an-
ticipate the prediction errors, in that the prediction errors
might be consistent with the data changes in general (i.e.,
larger data changes may lead to larger prediction errors).
However, this idea is not feasible, since our characterization
shows that the data change vs. prediction errors are not
consistent in many cases. Specifically, the Pearson product-
moment correlation coefficient (PPMCC)1 of the data change
vs. prediction errors is only 0.5 for majority of applications,
and it is even smaller than 0 for a few applications (such as
ICE model). Hence, we have to explore a more effective ap-
proach to select the best-fit prediction methods at runtime.

Our solution involves two phases for each particular
process to search the best-fit prediction method: (1) filtering
out the invalid prediction methods based on the impact
error bound and local runtime data and (2) selecting the
best-fit prediction method based on memory cost and pre-
diction errors. We adopt the feedback prediction methods
with different orders as the candidate prediction methods.

The pseudo-code for searching the bestfit prediction
method is presented in Algorithm 1. We first aggregate the
global data value range (denoted by r) for each process, by
leveraging the collective MPI function MPI Allreduce (line
1). We show in the next paragraph that the communication
cost is negligible for all applications considered in this study
and also could be controlled by users. Then, the current
rank/process will estimate its maximum local prediction
error (denoted by εj) for each candidate prediction method
(denoted by PMj , j=1,2,· · · ,n), based on the local data set
S. At line 5, the solutions whose maximum local prediction
errors estimated are smaller than the acceptable impact error
bound θr will be selected to construct a valid solution set
Γ (also as shown in Fig. 9). If Γ is empty, the algorithm
will choose the prediction method with minimum memory
cost(line 13-14); otherwise, it will try constructing an out-
standing prediction method set Γ′ (line 2), in which the pre-
diction errors are strictly limited below λθr, where λ∈(0,1]
is an adjustment coefficient. We evaluate the detection effect
using various λ (such as 0.1,0.2,0.3,· · ·) in our experiments
(discussed later). The method with the minimum memory
cost will be selected from Γ′ if it is not empty (line 9), or
otherwise the method with the minimum prediction error
will be selected from Γ (line 11).

Remark:

1) The communication cost of MPI Allreduce could be
controlled on demand. According to [38], [39], the cost
of MPI Allreduce increases with message size. In our
algorithm, only two numbers (max and min) need to
be aggregated for each variable and the total number
of key variables to protect is usually small (e.g., 10 for
FLASH, 4 for Nek5000, and only 1 for HeatDistribu-
tion), so the communication cost would be relatively

1PPMCC is a well-known measure of the linear correlation between
two variables, giving a value in the range [-1,1].

9

TABLE 2: Mean Linear Prediction Errors

App. 0th order 1st order 2nd order App. 0th order 1st order 2nd order

Blast2 0.017 0.006 0.005 BrioWu 7.6×10−4 1.3×10−4 8×10−5

SodShock 0.001 2.9×10−4 2.7×10−4 OrszagTang 0.0074 0.0019 0.0013

Sedov 0.006 0.0008 0.0004 BlastBS 0.003 7.6×10−4 5.5×10−4

DMRefle. 0.017 0.0096 0.0108 GALLEX 0.0064 9.6×10−5 2×10−6

Isen.Vortex 0.0014 1.7×10−4 5×10−5 Cellular 2.2×105 1.1×105 1.4×105

RHD Sod 0.006 0.0027 0.003 DustColl. 8×106 1×106 6×105

RHD Rie. 0.0024 0.0004 0.0002 MacLaurin 1×10−7 7×10−11 1.2×10−10

Eddy 7×10−5 2.9×10−8 2.7×10−11 Cond.Delta 3.5 0.136 0.08

Vortex 4×10−6 2.8×10−8 1.7×10−8 HeatDistri. 0.012 0.0075 0.0138

Algorithm 1 ADAPTIVE BEST-FIT PREDICTION METHOD

Input: current time step t, the local data set (denoted S) managed by the
current rank i, impact error bound ratio (denoted θ) to avoid influential
SDC impact, the set of n prediction methods (denoted Π={PM1, PM2,
· · · , PMn})
Output: bestfit prediction method.

1: Compute global data range r.
2: for (PMj , j=1,2,· · · ,n) do
3: Compute max local predict error εj by sample points.
4: end for
5: The valid solution set Γ={PMj— εj<θr}.
6: if (Γ 6= Φ) then
7: Construct the outstanding set Γ′={PMj— εj<λθr}
8: if (Γ′ 6= Φ) then
9: Output the method with min memory cost from Γ

′.
10: else
11: Output the method with min predict error from Γ.
12: end if
13: else
14: Output the method with min predict error from Π.
15: end if

small. On the other hand, since the global data value
range does not change largely during a short period
(the 3rd finding in Section 3.1), the collective operation
can be performed periodically for further reducing the
communication overhead. The users can also avoid the
communication cost, by either adopting non-blocking
collective operations or setting a static value range for
each process if the global value range is actually fixed.

2) The memory cost could be controlled as well when the
data changes slightly or sharply. When the majority of
data vary slightly over consecutive time steps, only the
0th order prediction would be adopted for most data
points, suffering very limited memory cost. If the data
change sharply in short periods such that the prediction
errors of all methods are larger than the impact error
bound, our Algorithm 1 would be gracefully degraded
to use the simplest prediction method with the mini-
mum cost.

3) The aggregated global value range may be affected by
SDC in two ways. For the first way, the data change
induced by SDC may be so large that the global maxi-
mum/minimum value is affected. We can strictly prove
that the detection sensitivity will not be affected clearly.
We omit the strict proof, but give a description because
of the space limitation. On the one hand, suppose the
value range decreases unexpectedly due to SDC, the
impact error bound for all data points will be reduced
and thus the detection range will be shortened, leading
to a higher detection sensitivity. On the other, if the
global value range increases significantly due to SDC,
the value of the data point affected significantly by

SDC can be easily perceived by the detector. As for the
second way, the SDC might occur during the calcula-
tion of global value range, which can be resolved by
computing the global value range twice or more times
because of tiny execution overhead (total execution
overhead is ≤6.3% for most applications, to be shown
in Section 5.2).

4) The probability of the detector itself being struck by
SDC is very small (about 1%), because the memory cost
is only about 1% of the memory footprint (as shown in
Section 5.2). In fact, we can further improve the relia-
bility by replicating the detector, since the probability
of having the replicated detectors hit by SDCs the same
way at the exactly same time is negligible.

5) The sample points used to estimate the best-fit predic-
tion method periodically (line 3) are selected based on
the even-sampling method proposed in our previous
work [8].

6) The candidate prediction methods are the feedback
predictions with various orders. If the latest best-fit
prediction order is low (e.g., if it is only 1st-order),
the high-order methods (such as 2nd-order method)
cannot be checked immediately, since they require more
time steps of values than do the low-order methods.
To this end, our algorithm periodically stores all recent
values (four recent time steps) for the sampled points,
for keeping the high-order prediction methods always
available to check. The periodic length is set to 20
time steps in our experiment, since it already leads to
satisfactory detection results based on our observation.

4.3.2 Adaptive Detection Range upon False Positives

After running Algorithm 1, each local data point is checked
by comparing the observed value with a normal value range
[X(t) − ρ , X(t) + ρ], which is constructed by the selected
best-fit prediction value X(t) and a detection radius ρ. The
time step t is considered having SDC if and only if the
observed value of some data point at the time step t falls
outside the predicted normal value range.

The detection radius devised in our solution can dy-
namically change in order to further reduce false positives,
which is motivated by the fact that many false positive
events may appear consecutively (based on our observa-
tion). As the detector detects an SDC in the execution, the
application is rolled back to recent checkpoints for recovery,
following the method presented in [13]. If the reported SDC
appears again, it is marked as a false positive/alarm; the
corresponding step is called false positive step. Our adaptive
detection radius will be enlarged upon a false positive event
until the next step of selecting the best-fit prediction method.

10

The detection radius is formally given in Equation (6),
where ε+θr indicates a basic radius and η refers to the recent
number of false positive iterations (a.k.a., false positive
steps). We enforce the detection radius to be no smaller than
the basic radius, which can avoid the false positives from
the perspective of the prediction errors, as it is expected to
cover the whole true normal value range (as shown in Fig.
9).

ρ = (1 + η)(ε+ θr) (6)

4.4 Implementation

We implement the adaptive impact-driven detector strictly
based on our design. It has also been integrated with the FTI
library [9], such that the users are allowed not only to detect
the SDCs but to correct the errors by checkpoint/restart
model. Our implementation provides both C and Fortran
interfaces, such that a broad range of HPC applications can
work with our detector. The library is available to download
from [40]. There are only four simple steps for users to an-
notate their MPI application codes: (1) initialize the detector
by calling SDC Init(); (2) specify the key variables to protect
by calling SDC Protect(var,ierr); (3) annotate the execution
iterations by inserting SDC Snapshot() into the key loop;
and (4) release the memory by calling SDC Finalize() in
the end. Our detector will then protect the HPC application
against SDCs after the compilation.

5 PERFORMANCE EVALUATION

In this section, we first show experimental setup and then
present the evaluation results.

5.1 Experimental Setting

We evaluate our adaptive impact-driven detector by run-
ning real-world HPC applications on 128-1,024 cores from
Argonne FUSION cluster [36]. For each application, all
the state variables are protected in our experiments. Since
different data points struck by the SDCs lead to various
detection results due to data dynamics, we must check
each data point at each time step for each application. We
focus on the 15 applications whose execution results can be
guaranteed correct by controlling the impact error bound
ratio θ. As for the other three applications (Eddy, BlastBS,
and DustCollapse), the impacts of SDCs on their execution
results are fairly sensitive to tiny SDC-induced data change
(as shown in Fig. 7), such that our current detector cannot
work effectively. How to detect SDCs for these applications
will be studied in the future work.

For detection sensitivity, we check each data point by
injecting the errors with different bit flips in binary and
extracting influential cases based on the impact error bound
ratio θ, which is set to 0.0001 for Blast2, 0.05 for HeatDis-
tribution, and 0.00078125 for remaining applications, since
these settings guarantee that the impact of SDC is below 2%,
based on our characterization (see Section 3.2.4). A time step
is considered false positive as long as there exists one data
point whose observed value (without error injection) falls
outside the predicted normal value range at that moment.
The coefficient λ that determines the outstanding solution
set is set to 0.2. In fact, our experiments show that λ=0.1-
0.5 leads to the same detection results, in that the prediction

errors are either much smaller than 0.1·θr or greater than
0.5·θr, such that λ=0.1-0.5 can filter non-outstanding meth-
ods easily. Both θ and λ are tunable in a configuration file on
demand. How to automatically determine their values will
be our future work.

5.2 Experimental Results

Fig. 11 presents the cumulative distribution function (CDF)
of the false positive rate for 15 applications, based on the
execution of 128 processes/ranks. The false positive rate (FP-
rate) is used to evaluate the detection precision; it is defined
as the number of false positive iterations over the total
number of iterations under the evaluation. The lower the
FP-rate is, the more precise the detection. As shown in Fig.
11 (a), (c), and (d), the FP-rate of our adaptive impact-
driven detector (AID) is significantly lower than that of
the QCF method and CCF method (i.e., QCF with 1st-order
feedback) proposed in [3], [4] and [8], respectively. The two
methods were considered the best solutions in those studies
compared with other linear-prediction methods, including
auto-regression (AR) and auto-regression moving-average
(ARMA). The key reason that our solution has a much
lower FP-rate is twofold. First, our solution is driven by
the relative error bound ratio θ, which can automatically
tune the impact error bound upon the change of data value
range. That is, as the global data value range increases over
time, our solution can increase the detection range to adapt
to the increase of the impact error bound. This approach is
in contrast with the QCF/CCF method that adopts a fixed
detection radius. Second, our solution is able to dynamically
adapt to the false positive events at runtime. As shown in
Fig. 11 (a) and (b), our FP-adapted design (Section 4.3.2)
is able to reduce the FP-rate down to 10% for all test-
cases and below 1% for a large majority of cases. That is,
there is only 1 iteration with unnecessary recovery triggered
every 100 iterations in the execution for a large majority
of applications. As shown in Fig. 11 (c) and (e), although
the FP-rate can also be reduced for QCF by enlarging the
detection radius ρ from 0.0001 to 0.01, this would cause
unacceptable low detection sensitivity, to be shown later.

We present the detection sensitivity of our solution in
Fig. 12. Detection sensitivity (i.e., recall) is defined as the
fraction of true positives (true alarms) that are detected over
all SDCs experienced/injected. In the figure, we can clearly
observe that under our FP-adapted AID and FP-unadapted
AID, the detection sensitivity is about 80% and 95% for most
of the detections, respectively. The detection sensitivity can
reach up to 99.99% for a few applications. By comparison,
the sensitivities of the QCF detectors with ρ=0.0001 and
ρ=0.01, are around 97% and 75%, respectively. Note that the
QCF detector with ρ=0.0001 is actually unacceptable from
the perspective of false positive (as shown in Fig. 11), so the
best solution is our FP-unadapted AID from the perspective
of recall. By combining Fig. 11 (a) and (b) and Fig. 12 (a) and
(b), users are allowed to select one of the two versions of
AID on demand, with various detection preferences (either
lower FP-rate or higher recall).

In what follows, we discuss the detection overhead,
including memory overhead and execution overhead. It will
be observed that the memory overhead of our detector is

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

False Positive Rate

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(a) AID (FP-adapted)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

False Positive Rate

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(b) AID (FP-unadapted)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

False Positive Rate

(c) QCF (ρ=0.0001)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

False Positive Rate

(d) CCF (ρ=0.0001)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

False Positive Rate

(e) QCF (ρ=0.01)

Fig. 11: Distribution of False Positive Rate (Legends of (c),(d),and (e) are the same to (a) and (b))

≤15% of the amount of memory occupied by the applica-
tions at runtime and the execution overhead (including com-
putation cost and communication cost with MPI Allreduce)
is ≤13.5% of the application’s execution time without our
detector.

In Fig. 13 (a), we present the memory cost of our detector,
as compared to the memory size occupied by only state
variables. Compared with the QCF whose memory cost is
always 4X, our detector can reduce the memory overhead by
37.5-67.5%, which is mainly due to the adaptive selection of
the best-fit orders during the execution. Fig. 13 (b) presents
the best-fit orders selected by rank 0 in the whole execution
period (1,000 iterations) for the 15 applications. One can
clearly see that the best-fit orders indeed are dynamically
changed over time. Most of the best-fit orders stay at order
0 and 1, reducing memory cost significantly.

We evaluate the memory cost ratio and execution over-
head ratio of our detector. The memory cost ratio is defined
as the ratio of the memory cost of our detector to the
total run-time memory usage1 without the detector. The
execution overhead ratio is defined as the ratio of the
increased time cost by our detector to the execution time
without the detector. As shown in Table 3, the memory
footprint is increased by less than 15% under our detector
(except for Vortex and Eddy) and only 1-5% for majority of
applications. Such a small memory cost is due to the fact
that the memory footprints occupied by the applications
themselves are significantly larger than the memory sizes
cost by the state variables. Similarly, the huge memory
cost of our detector for the Vortex and Eddy is due to the
relatively large memory size occupied by the state variables.
The execution overhead (including computation cost and
communication cost with MPI Allreduce) of the detector, as

1Run-time memory usage is evaluated by Resident Set Size (RSS),
which is the amount of physical memory (RAM) size occupied by the
running process.

presented in the table, is reduced to ≤6.3% when running
all applications in a relatively large scale environment (such
as 1024 cores). The diversity of the execution overhead
ratio is due to the different workloads on computation and
communication with various applications. It is worth noting
that the execution overhead often decreases with scales,
indicating a high scalability of our detector. Also note that
all of our experiments were carried out without outputting
any checkpoint/plot files. In fact, researchers often need to
output results periodically during the execution for observ-
ing the data evolution, so the execution overhead should be
much lower in practice.

6 RELATED WORK

Efficient SDC detection methods have been extensively ex-
plored for years. They can be split into three categories,
replica based detection, algorithm-based fault tolerance
(ABFT) and runtime data analysis based detection.

The replica based detector creates the replica processes
or messages to detect and correct possible errors. A typical
example is RedMPI [41], which creates “replica” MPI tasks
and performs online MPI message verification intrinsic to
existing MPI communication. The drawback is that it leads
to relatively high redundancy of resources.

ABFT [42], [43], [44], [45], [14], [15] is a type of cus-
tomized solution that protects against soft errors (e.g., SDC
faults) based on the fundamental analysis of linear alge-
bra/matrix operations (e.g., sparse linear algebra [46]). Such
approaches could work effectively/efficiently in detecting
silent corruptions with well-limited overhead. However,
they are fairly specific to particular kernels and applications,
thus they cannot be used by all HPC applications. Instead,
we propose a generic detector that takes advantage of
dynamic runtime data analysis during the execution.

The detection methods based on runtime data analy-
sis have also been extensively studied recently. Yim [7]

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

Detection Sensitivity (Recall)

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(a) AID (FP-adapted)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 20% 40% 60% 80% 100%

C
D

F

Detection Sensitivity (Recall)

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(b) AID (FP-unadapted)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
D

F

Detection Sensitivity (Recall)

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Riemann

RHD_Sod
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(c) QCF (ρ=0.0001)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

C
D

F
Detection Sensitivity (Recall)

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Riemann

RHD_Sod
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(d) QCF (ρ=0.01)

Fig. 12: CDF of Detection Sensitivity (Recall)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0X 0.5X 1X 1.5X 2X 2.5X 3X

C
D

F

Memory Cost

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(a) CDF of Memory Cost

 0

 1

 2

 3

 4

 0 200 400 600 800 1000

B
e

s
tf
it
 O

rd
e

r

Time Step

Blast2
Sod

Sedov
DMReflection

IsentropicVortex
RHD_Sod

RHD_Riemann
Vortex

BrioWu
OrszagTang

GALLEX
Cellular

MacLaurin
ConductionDelta
HeatDistribution

(b) Bestfit Orders

Fig. 13: Memory Cost and Best-fit Orders

proposed an approach (called VHED) for protecting the
HPC applications against transient faults on GPU devices.
He designed a bin-structure-based algorithm for detecting
the anomalies that appear noticeably different from other
data values. Fiala et al. [47] proposed a tunable, software-
based DRAM error detection and correction library (named
LIBSDC) for HPC. LIBSDC works by analyzing the overall
memory pages at runtime, so it cannot selectively protect
the sensible variables, which may definitely suffer from high
detection overhead. Chalermarrewong et al. [48] proposed a
time-series-based method to predict failures of data centers.
Their solution is designed for data centers instead of HPC
applications, so it cannot be directly used to detect SDC
errors. Moreover, it adopts a supervised learning method,
auto-regressive moving algorithm (ARMA), which requires
a training period to construct the estimate coefficients, suf-
fering extra detection overhead.

In our previous work [2], [3], [8], we proposed a one-
step ahead prediction model for detecting the SDC errors.
In those studies, we compared different prediction methods

(such as LCF, QCF, AR, and ARMA) by using about five
different applications. By comparison, we present three new
contributions in this work. (1) We comprehensively analyze
the HPC data features based on up to 18 real-world applica-
tions. (2) We carefully investigate the impact of SDC on the
execution results, so as to explore the appropriate bound of
the detection range for our impact-driven detector. (3) We
design a novel adaptive detector that can reduce the false
alarms and memory cost significantly, with user-acceptable
execution results based on our analysis of SDC’s impact.

7 CONCLUSION AND FUTURE WORK

We designed a novel adaptive impact-driven detector to
protect HPC applications against influential SDCs. We char-
acterized the HPC data features and the impact of SDC on
the results by using 18 real-world applications across from
different domains. Our detector selects best-fit prediction
methods based on local runtime data and automatically

13

TABLE 3: Analysis of Detection Overhead

Application Memory Cost Ratio Execution Overhead Ratio
256 cores 512 cores 1024 cores 256 cores 512 cores 1024 cores

Blast2 1.65% 2.1% 1.56% 3.67% 6.13% 3.93%
SodShock 0.95% 2.19% 0.44% 3.2% 3.5% 3.6%
Sedov 0.84% 0.71% 3.7% 4.6% 3.6% 3.7%
DMReflection 1.25% 1% 1.34% 3% 3.64% 3.46%
IsentropicVortex 4.7% 1% 1.5% 2.65% 1.89% 1.18%
RHD Sod 1.6% 3.9% 4.1% 3.11% 3.4% 3.4%
RHD Riemann 1.29% 1.27% 3.9% 4.35% 3.6% 3.7%
Eddy 25.3% 10.6% 23.9% 12% 8.6% 5%
Vortex 44% 52% 48% 1.2% 0.5% 0.4%
BrioWu 9.4% 10.1% 1.9% 2.5% 3.74% 2.85%
OrszagTang 1.12% 1.98% 1.77% 2.46% 5.1% 3%
BlastBS 2.83% 0.87% 0.71% 3.1% 3% 2.98%
Cellular 2.16% 1.66% 3.38% 3.02% 3.44% 3.38%
DustCollapse 13.7% 14.6% 14.1% 1.4% 1.13% 1.12%
MacLaurin 12.8% 13% 9.15% 1.55% 1% 1.3%
ConductionDelta 1.17% 3.84% 1.8% 3.1% 3.6% 2.97%
HeatDistribution 0.9% 0.72% 0.85% 13.5% 8.5% 6.3%

tunes the detection range upon false positive events. The
key findings are listed below.

• For the time series data of HPC applications, the data
are smooth overall in the whole period, while sharp
data changes exist at some time steps. This indicates
that the one-step ahead prediction method should work
effectively for detecting SDCs at runtime, while it is
necessary to devise an adaptive method that can suit
different data features.

• The characterization of SDC impact on 18 real-world
applications indicates that: when the impact error
bound ratio θ is set to 0.00078125, the impact of SDC
can be limited below 2% of the data value range in
the whole execution period for most of the cases (an
exception is Blast2, whose bound ratio recommended is
0.0001). Thus, θ=0.00078125 or 0.0001 is a recommended
bound ratio.

• Through the experiments with the real-world appli-
cations running on up to 1024 cores from Argonne
FUSION cluster, our detector can detect 80-99.99% of
influential SDCs, with the false positive rate reduced to
0-1% in most cases compared with 10-99% under other
state-of-the-art approaches.

• The memory cost can be reduced by 37.5-67.5% than
other state-of-the-art solutions, with real memory foot-
print overhead reduced to ≤15% and execution over-
head reduced to ≤6.3% for a large majority of cases
studied in this paper.

In future work, we plan to investigate how to protect the
applications, in which the impacts of SDCs on the execution
results cannot be characterized/formulated based on rela-
tive data change ratio (such as Eddy and BlastBS). we also
plan to study how to automatically optimize the values of
the parameters used in the detector (such as θ and λ) during
the execution for further improving the detection ability.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy,
Office of Science, Advanced Scientific Computing Research
Program, under Contract DE-AC02-06CH11357; and by the
ANR RESCUE, the INRIA-Illinois-ANL-BSC Joint Labora-
tory on Extreme Scale Computing, and Center for Exascale
Simulation of Advanced Reactors (CESAR) at Argonne.

REFERENCES

[1] M. Snir, et al, “Addressing failures in exascale computing,” in
International Journal of High Performance Computing Applications,
pages 1- 45, 2014.

[2] S. Di, E. Berrocal, L. Bautista-Gomez, K. Heisey, R. Guptal, and F.
Cappello, “Toward Effective Detection of Silent Data Corruptions
for HPC Applications,” ser. SC’14 – poster section.

[3] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
“Lightweight Silent Data Corruption Detection Based on Runtime
Data Analysis for HPC Applications,” tech. report. [online].
Available: http://www.mcs.anl.gov/publication/lightweight-
silent-data-corruption-detection-based-runtime-data-analysis-hpc

[4] E. Berrocal, L. Bautista-Gomez, S. Di, Z. Lan, and F. Cappello,
“Lightweight Silent Data Corruption Detection Based on Runtime
Data Analysis for HPC Applications,” in proceedings of High-
Performance Parallel and Distributed Computing (HPDC’15), 2015.

[5] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R.
Brightwell, “Detection and Correction of Silent Data Corruption
for Large-Scale High-Performance Computing,” in Proceedings of
the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC’12), Los Alamitos, CA, USA: IEEE
Computer Society Press, pages 78:1-78:12, 2012.

[6] A.R. Benson, S. Schmit, and R. Schreiber, “Silent Error Detection
in Numerical Time-Stepping Schemes,” in International Journal of
High Performance Computing Applications, pages 1-23, 2014.

[7] K. S. Yim, “Characterization of Impact of Transient Faults and
Detection of Data Corruption Errors in Large-Scale N-Body Pro-
grams Using Graphics Processing Units,” in Proceedings of 28th In-
ternational Parallel and Distributed Processing Symposium (IPDPS’14),
pages 458-467, 2014.

[8] S. Di, E. Berrocal, F. Cappello, “An Efficient Silent Data Corruption
Detection Method
with Error-Feedback Control and Even Sampling for HPC Appli-
cations,” in Proceedings of 15th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (CCGrid’15), 2015.

[9] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello, and
N. Maruyama, S. Matsuoka, “FTI: High Performance Fault Toler-
ance Interface for Hybrid Systems,” in Proceedings of International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC’11), pages 32:1–32:32, 2011.

[10] MPICH library: [online] http://www.mpich.org/
[11] S. Di, M.-Slim Bouguerra, L.A. Bautista-Gomez, and F. Cappello,

“Optimization of Multi-level Checkpoint Model for Large Scale
HPC Applications,” in Proceedings of 28th International Parallel
and Distributed Processing Symposium (IPDSP’14), pages 1181-1190,
2014.

[12] S. Di, L.A. Bautista-Gomez, and F. Cappello, “Optimization of a
Multilevel Checkpoint Model with Uncertain Execution Scales,” in
Proceedings of International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC’14), pages 907-918, 2014.

[13] G. Bosilca, A. Bouteiller, T. Hérault, Y. Robert and J. Dongarra,
“Composing resilience techniques: ABFT, periodic and incremen-
tal checkpointing,” in International Journal of Networking and Com-
puting (IJNC), 5(1): 2-25, 2015.

[14] D. Li, Z. Chen, p Wu, and j.S. Vetter, “Rethinking Algorithm-
based Fault Tolerance with A Cooperative Software-Hardware

14

Approach,” in Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC’13).
ACM, New York, NY, USA, 44:1 - 44:12, 2013.

[15] Z. Chen, “Online-ABFT: An Online Algorithm Based Fault Tol-
erance Scheme for Sot Error Detection in Iterative Methods,” in
18th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’13), pages 167-176, 2013.

[16] ASCF Center. FLASH User’s Guide (Version 4.2). [online] Avail-
able at http://flash.uchicago.edu/site/flashcode/user support/
flash2 users guide/docs/FLASH2.5/flash2 ug.pdf

[17] V. Eswaran and S.B. Pope, “An examination of Forcing in Direct
Numerical Simulations of Turbulence,” in Computers and Fluids,
16:257–278, 1988.

[18] p. Colella and P.R. Woodward, “The Piecewise Parabolic Method
(PPM) for Gas-Dynamical Simulations,” in Journal of Computational
Physics (JCP), 54:174–201, 1984.

[19] G.A. Sod, “A Survey of Several Finite Difference Methods for
Systems of Nonlinear Hyperbolic Conservation Laws,” in Journal
of Computational Physics (JCP), 27:1–31, 1978.

[20] L.I. Sedov, “Similarity and Dimensional Methods in Mechanics
(10th Edition),” New York: Academic, 1959.

[21] H.C. Yee, M. Vinokur, M.J. Djomehri, “Entropy splitting and
numerical dissipation,” in Journal of Computational Physics (JCP),
162:33–81, 2000.

[22] J.M. Marti and E. Muller, “Numerical hydrodynamics in special
relativity,” in Living Rev. Relativ., 6:7, 2003.

[23] C.W. Schulz-rinne, J.P. Collins, and H.M. Glaz, “Numerical Solu-
tion of the Riemann Problem for Two-dimensional Gas Dynam-
ics,” in SIAM J. Sci. Comput., 14:1394–1414, 1993.

[24] O. Walsh, “Eddy Solutions of the Navier-Stokes Equations,” in
Proceedings of The Navier-Stokes Equations II - Theory and Numerical
Methods, 306–309, Oberwolfach 1991.

[25] P. Fisher, “Nek5000 User Guide,” [online] Available at
http://www.mcs.anl.gov/f̃ischer/nek5000/examples.pdf.

[26] P.J. O’Rourke and M.S. Sahota, “A Variable Explicit/Implicit
Numerical Method for Calculating Advection on Unstructured
Meshes,” in Journal of Computational Physics (JCP), 143:312–345,
1998.

[27] M. Brio and C.C. Wu, “An Upwind Differencing Scheme for the
Equations of Ideal Magnetohydrodynamics,” in Journal of Compu-
tational Physics, 75:400–422, 1988.

[28] S.A. Orszag and C.-M. Tang, “Small-Scale Structure of Two-
Dimensional Magnetohydrodynamic Turbulence,” in Journal of
Fluid Mechanics (JFM), 90:129-143, 1979.

[29] A.L. Zachary, A. Malagoli, and P. Colella, “A Higher-Order Go-
dunov Method for Multidimensional Ideal Magnetohydrodynam-
ics,” in SIAM Journal of Scientific Computing, 15(2):263–284, 1994.

[30] A. Obabko. Simulation of Gal-
lium Experiment. [online] Available at:
http://www.cmso.info/cmsopdf/princeton5oct05/talks/Obabko-
05.ppt

[31] F.X. Timmes, M. Zingale, K. Olson, B. Fryxell, P. Ricker, A.C.
Calder, L.J. Dursi, H. Tufo, P. MacNeice, J. W. Truran, and R.
Rosner, “On the Cellular Structure of Carbon Detonations,” in
Astrophysical Journal, 543:938-954, 2000.

[32] S.A. Colgate and R.H. White, “The Hydrodynamic Behavior of
Supernovae Explosions,” in The Astrophysical Journal. 143:626–681,
1966.

[33] N. Ozisik, “Finite Difference Methods in Heat Transfer,” CRC
Process, 1994.

[34] B. Fryxell, K. Olson, P. Ricker, F.X. Timmes, M. Zingale, D.Q. Lamb,
p. MacNeice, R. Rosner, J.W. Truran, and H. Tufo, “Flash: An
Adaptive Mesh Hydrodynamics Code for Modeling Astrophysical
Thermonuclear Flashes,” in The Astrophysical Journal Supplement
Series (ApJS), 131:273–334, 2000.

[35] Nek5000 project. [online]. Available : https://nek5000.mcs.anl.gov
[36] Fusion Cluster. [online]. Available at : http://www.lcrc.anl.gov/
[37] R.H. Shumway, “Applied Statistical Time Series Analysis,” Prentice

Hall, Englewood Cliffs, NJ, 1988.
[38] S. Saini, P. Mehrotra, K. Taylor, S. Shende, R. Biswas, “Performance

Analysis of Scientific and Engineering Applications Using MPIn-
side and TAU,” in Proceedings of 12th IEEE International Conference
on High Performance Computing and Communications (HPCC’10),
pages 265-272, 2010.

[39] S. Kumar and D. Faraj, “Optimization of MPI Allreduce on the
Blue Gene/Q supercomputer,” in Proceedings of the 20th European
MPI Users’ Group Meeting (EuroMPI’13), pages 97-103, 2013.

[40] AID SDC detection library. [online]. Available at:
https://collab.mcs.anl.gov/display/ESR/AID.

[41] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R.
Brightwell, “Detection and Correction of Silent Data Corruption
for Large-Scale High-Performance Computing,” in Proceedings of
the International Conference on High Performance Computing, Net-
working, Storage and Analysis (SC’12), pages 78:1-78:12, 2012.

[42] M. Turmon, R. Granat, D. Katz, J. Lou, “Tests and Tolerances
for High-Performance Software-Implemehted Fault Detection,” in
Transactions on Computers, 52(5):579–591, 2003.

[43] J. A. Gunnels, D. S. Katz, E. S. Quintana-Ortł, and R. A. van de
Geijn, “Fault-Tolerant High-Performance Matrix Multiplication:
Theory and Practice,” in Proceedings of International Conference on
Dependable Systems and Networks (DSN’00), pages 47-56, 2001.

[44] M. Turmon, R. Granat, and D. S. Katz, “Software-Implemented
Fault Detection for High-Performance Space Applications,” in
Proceedings of International Conference on Dependable Systems and
Networks (DSN’00), pages 107-116. 2000.

[45] E. Ciocca, I. Koren, Z. Koren, C. M. Krishna, and D. S. Katz,
“Application-Level Fault Tolerance and Detection in the Orbital
Thermal Imaging Spectrometer,” in Proceedings of Pacific Rim Inter-
national Symposium on Dependable Computing, pages 43-48, 2004.

[46] J. Sloan, R. Kumar, and G. Bronevetsky, “Algorithmic Approaches
to Low Overhead Fault Detection for Sparse Linear Algebra,” in
Proceedings of International Conference on Dependable Systems and
Nekworks (DSN’12), pages 1-12, 2012.

[47] D. Fiala, K.B. Ferreira, F. Mueller, and C. Engelmann, “A Tunable,
Software-based DRAM Error Detection and Correction Library for
HPC,” in Proceedings of International Conference on Parallel Processing
(Euro-Par’11), pages 251-261, 2011.

[48] T. Chalermarrewong, T. Achalakul, and S.C.W. See, “Failure Pre-
diction of Data Centers Using Time Series and Fault Tree Anal-
ysis,” in 18th Preceedings of International Conference on Parallel and
Distributed Systems (ICPads’12), pages 794-799. 2012.

Sheng Di Sheng Di received his master degree
from Huazhong University of Science and Tech-
nology in 2007 and Ph.D degree from The Uni-
versity of Hong Kong in 2011. He is currently a
postdoc researcher at Argonne National Labora-
tory (ANL). Dr. Di’s research interest involves re-
silience, high performance computing (HPC) and
cloud computing. He is working on multiple HPC
projects, such as detection of silent data corrup-
tion and characterization of failures and faults for
HPC systems. Contact him at sdi1@anl.gov.

Franck Cappello Franck Cappello is Program
Manager and Senior Computer Scientist at ANL.
Before moving to ANL, he held a joint posi-
tion at Inria and University of Illinois at Urbana
Champaign where he initiated and co-directed
from 2009 the INRIA?Illinois Joint Laboratory
on Petascale Computing. Until 2008, he led a
team at INRIA where he initiated the XtremWeb
(Desktop Grid) and MPICH-V (fault-tolerant MPI)
projects. From 2003 to 2008, he initiated and
directed the Grid5000 project, a nationwide com-

puter science platform for research in large-scale distributed systems.
He has authored papers in the domains of fault tolerance, high-
performance computing, desktop Grids and Grids and contributed to
more than 70 program committees. He is editorial board member of
the international Journal on Grid Computing, Journal of Grid and Utility
Computing and Journal of Cluster Computing. He was the Program
program co-chair for ACM HPDC2014, Test of time award chair for
IEEE/ACM SC13, Tutorial co-Chair of IEEE/ACM SC12, Technical pa-
pers co-chair at IEEE/ACM SC11, Program chair of HiPC2011, program
cochair of IEEE CCGRID 2009, Program Area co-chair IEEE/ACM
SC’09, General Chair of IEEE HPDC 2006. Contact him at cap-
pello@mcs.anl.gov.

The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Depart-
ment of Energy Office of Science laboratory, is operated under Contract No. DE-
AC02-06CH11357. The U.S. Government retains for itself, and others acting on its
behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to
reproduce, prepare derivative works, distribute copies to the public, and perform
publicly and display publicly, by or on behalf of the Government.

